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ABSTRACT 
Although several studies have been conducted on regression test 
selection, augmentation, prioritization, and pruning, regression test suite 
creation is performed in an ad hoc manner for most software systems by 
selecting a few crucial parameters and their combinations. Regression 
test suite creation can be rigorously approached by using the 
combinatorial testing (CT) method. Although this approach is 
advantageous, it has been used in only a few cases. This paper presents a 
practical approach for applying CT and augmenting the Contiki and 
Cooja base regression test suites with the National Institute of Standards 
and Technology tools. We discuss the results of using CT for the Contiki 
and Cooja regression test suites. In our study, we examined the 
inadequacies of existing regression test suites. We then incorporated 
additional tests to re-engineer the existing test suites by using the 
Automated Combinatorial Testing for Software tool. The test suite was 
written from scratch for the Cooja simulator of the Contiki operating 
system. In each case, we measured the coverage of the Contiki simulator. 
We observed a marginal increase in the simulator code coverage for the 
re-engineered test suite. However, a substantial increase was observed in 
the simulator coverage for the test suite written with the simulator acting 
as a system under test. In this study, we also examine the automation of 
test case generation for Contiki and Cooja. 
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1. INTRODUCTION 
Software systems developed and maintained by teams must have a robust 
regression testing mechanism in place. This mechanism is required 
because the changes in the codebase must be tested, and the new code 
must be incorporated almost overnight. In most cases, a regression test 
suite is created in an adhoc manner by selecting a few crucial parameters 
and their combinations. This results in a small test suite that can be 
executed rapidly; however, the obtained test suite neglects crucial test 
cases and does not satisfy the testing requirements. 

In this study, we used the Automated Combinatorial Testing (CT) for 
Software (ACTS) tool of the National Institute of Standards and 
Technology (NIST) [1] to generate combinatorial test cases from the 
Contiki and Cooja regression test suites [2]. We used the code coverage 
as a criterion for measuring the testing adequacy. Contiki is an operating 
system, whereas Cooja is a simulator. Contiki and Cooja are primarily 
used in embedded devices [3]. They have a large code with several input 
parameters. We can build a practical and reliable regression test suite by 

augmenting an existing regression test suite through additional tests 
generated with a combinatorial approach. 

2. BACKGROUND 
Contiki is a widely accepted Internet of Things (IoT) operating system 
and is suitable for memory- and resource-constrained devices. Contiki is 
an open-source software with a substantial user community. Contiki 
software includes Instant Contiki, which is a user-friendly environment 
for testing. By using VMWare, Instant Contiki can be launched in a 
desktop environment. The Ubuntu-based environment includes toolchain 
dependencies that help in making incremental changes to the operating 
system easy. Contiki can be built for various target platforms by tweaking 
the make file. Moreover, Contiki supports several hardware platforms. 
Instant Contiki is built in a Java Simulator tool called Cooja, which 
interacts with Contiki through the Java Native Interface. 

Cooja has a standard regression test suite in the regression test folder. The 
test suite comprises XML files with the csc extension. Cooja can 
understand these csc files. The XML files have information regarding the 
configuration and arrangement of the mote type as well as scenario-
specific JavaScript embedded in them. Although Contiki supports 
various hardware platforms, the regression test suite does not reflect it. 
The test cases are concentrated around limited mote types. 

In a preliminary investigation, we noticed a scope for improving the test 
suite. Two additional test suites were planned. These additional test suites 
were named the re-engineered and Cooja test suites. Details regarding the 
test suites are provided in Table I. 

Table I. Test suites and their description 
Test suite System under test Additional comments 
Base test suite Mainly Contiki This can be found in a 

regression folder. 
This suite is referred 
to as “Test Suite A” in 
this paper. 

Re-engineered test 
suite 

Primarily Contiki This suite was created 
by selecting 
additional test cases 
from the ACTS tool. 
This test suite is 
referred to as “Test 
Suite B.” 

Cooja test suite Primarily Cooja 
simulator 

This test suite was 
created from scratch. 
This test suite is 
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referred to as “Test 
Suite C.” 

 

We aimed to quantify the effectiveness of the test suites by collecting the 
coverage data in the operating system and its simulator for the cases A 
and B and the coverage data in the simulator for case C. However, no 
open-source or proprietary code coverage tools of C-language software 
are available for the target platforms supported by Contiki. Furthermore, 
Contiki is a hard real-time operating system. C code coverage tools add 
to the overhead in the form of probes or traces, which makes test cases 
fail. We explored the J Test Pro [4] and G Cover software [5]. These 
software did not satisfy the testing requirement because they used 
proprietary compilers and their supported hardware platforms were 
different from those of Contiki. Therefore, we indirectly measured the 
coverage of the simulator for Test Suites A and B. For Test Suite C, the 
coverage of the simulator written in Java was measured directly because 
the system to be tested was a simulator. 

2.1 Existing Regression Test Suites 
Unlike other IoT operating systems, such as RIOT [6] and Tiny OS [7], 
the Contiki operating system includes a standard regression test suite, 
which is referred to as a base regression test suite. The base regression 
test suite contains 64 test cases, which are used for the regression testing 
of Contiki. An initial analysis of the regression test suite indicated that 
the test cases were unevenly distributed across the hardware platforms 
supported. 
The lack of testing across hardware platforms is a serious problem 
because several applications are planned on the Contiki operating system. 
The absence of an appropriately tested code results in applications that 
are not functioning because of problems in the operating system. 
No specification or test design documents are available for the Contiki 
operating system. Thus, the existing regression test suite is a starting 
point for understanding the functionalities supported by the Contiki 
operating system. 

2.2 ACTS Tool for Generating Combinatorial 
Test Design 
A report by the NIST indicates that inadequate testing results in a cost of 
$59.5 billion per year to the US economy [8]. A similar cost is possible 
for software developed in other parts of the world. Various testing 
methodologies are actively studied and proposed. The NIST proposed a 
method called CT in the field of testing. The NIST provides users with 
two tools as a part of CT, namely the ACTS and Combinatorial Coverage 
Measurement (CCM) tools. 
A survey report by Nie indicates that CT is widely accepted [9]. The 
NIST published a manual for practical CT [10]. The books by Ammann 
and Beizer serve as reference material for testing [11,12]. The ACTS tool 
is suitable for cases in which testing must be performed for more than 
two parameters [13]. CT is applied to the software of large organizations 
[14]. The CCM tool can be used to complement the ACTS tool [15]. To 
demonstrate that the ACTS tool can be used to test real-time software, 
CT was applied to the ACTS tool [16]. 
In this study, we used the ACTS tool of the NIST for generating the test 
design. The ACTS tool uses various algorithms to generate the test cases 
[6]. We applied the ACTS tool to generate the test cases for Cooja. Our 
preliminary analysis indicated that the test cases generated by the ACTS 
tool were evenly distributed around the hardware configurations. The 
input that must be supplied to the ACTS tool is provided in Appendix A. 
The input includes the parameters and parameter values of Cooja as well 
as the constraints that must be supplied to the ACTS tool. The ACTS tool 
generates its output in a series of rows, where each row represents a test 
case. The test cases are mapped to the functional test cases and can then 
be executed in the test environment. 

2.3 Code Coverage Using OpenClover 
The code coverage is a quantitative measure of how appropriately the test 
cases test the software. Currently, various Java coverage tools are 
available. Coverage tools employ either source code or bytecode 
instrumentation for collecting coverage data. Instrumentation is a process 
in which a tool inserts additional hooks into the codebase. The tool later 
uses these hooks for collecting data. The coverage was meant for both the 
Contiki operating system and its simulator Cooja. In this study, we 
examine the coverage data on Cooja. For Cooja, the build.xml file is 
already available. Therefore, the CodeCover and Clover tools were ideal 
for our study [17]. 
The regression test cases were written such that the Java Virtual Machine 
terminated each test case. The coverage tool CodeCover generated the 
coverage log files (CLFs) for every session of the run. Thus, for 100 test 
cases, 100 CLFs were generated. To obtain the consolidated view at a 
regression test suite level, the sessions of the run must be merged. 
CodeCover is ineffective for merging hundreds of sessions. However, the 
Clover tool can effectively merge the sessions. Clover is an open-source 
software (effective since April 2017). Clover automatically augments the 
database files of various sessions. Thus, merging the sessions manually 
or through shell scripts is not required. We used the Clover Java code 
coverage tool for collecting coverage data. The build.xml file was 
suitably modified for code coverage data collection. 

3. RE-ENGINEERING THE BASE TEST SUITE 
Two scenarios exist for the software under study: 
• The software includes the standard regression test suite. 
• The software does not include the base regression test suite. 
In the first case, the missing test cases can be generated using the CCM 
tool. Another approach involves designing the test suite by using the 
ACTS tool and finding the missing test cases from the regression test 
suite. In the second case, the test design uses the ACTS tool and selects 
an appropriate number of test cases according to the coverage 
requirements. 
In this section, we examine how the inadequacy of the coverage data can 
be addressed by re-engineering the regression test suite. 

3.1 Test Design Using the ACTS Tool 
We generated the test design by using the ACTS tool of the NIST. The 
ACTS tool evenly distributed the test cases around the mote types. The 
test cases of Contiki and Cooja were in the *.csc format, which is an XML 
file that Cooja can understand. The *.csc files were scenario-specific and 
typically a few hundreds of lines in length. In our previous research, we 
generated the design by using the ACTS tool. The test design exhibited 
an even distribution of the test cases around the MICAz, ESB, Wismote, 
Z1, Sky, and Contiki mote types. 
Figure 1 depicts the process of collecting the benchmark code coverage 
data. The code coverage data of the baseline regression test suite was 
compared with that of the re-engineered test suite. 
In a previous study, we described the design of the ACTS tool by 
considering all the parameters at a time [18]. The implementation of such 
test cases was impractical, and therefore two parameters were considered 
at a time. 
The test design was implemented using the ACTS tool of the NIST. The 
input parameters were selected after examining the base regression test 
suite. The ACTS tool indicated the existence of 289 test cases. This 
shows that ACTS tool was inefficient in generation of required test cases. 

3.2 Functional Test Case Generation 
The functional test cases built the firmware from the *.c files in the 
examples directory and copied the files to the motes for a given scenario. 
However, the build of the firmware failed for a few target types. 
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For example: 
1) The file example-runicast.c in the directory /home/user/contiki-
2.7/examples/rime was successful in building for all the target types, 
namely the Sky, ESB, exp5438, Z1, Wismote, and MICAz motes. 
2) The aforementioned behavior was expected from the example-trickle.c 
in the directory /home/user/contiki-2.7/examples/rime. However, the 
build (i.e., “make command”) was successful for the Sky, ESB, Z1, and 
Wismote motes but failed for the exp5438 and MICAz motes. 
The behavior in 1 and 2 was external to the test cases that were 
implemented. Thus, the test cases depended on the successful build for 
all the target types. Therefore, all the test cases could not be implemented 
using the ACTS tool. Furthermore, we wanted to restrict the number of 
test cases to a reasonable count (say 100) because if all the 289 suggested 
test cases were implemented and included in the regression, it would 
result in the following: 
• A test all approach. 
• Very long execution cycles (considering the time taken to execute the 
test cases in Contiki and Cooja). 

 
Figure 1. Process of collecting the code coverage in CT 

 

4. TEST DESIGN BY USING THE ACTS TOOL 
ON THE RE-ENGINEERED TEST SUITE 
The test cases suggested by the ACTS tool formed a super set of the base 
regression test suite. Because the base regression test suite already had 
64 test cases, an additional 35 test cases from the ACTS design were 
implemented using autogeneration. We essentially had two test suites: 
• The base regression test suite of Contiki, which had 64 test cases. 
• The modified regression test suite with 99 test cases from the ACTS 
design. Among the 99 test cases, 35 were new and the remaining 64 were 
the same as the test cases of the base regression test suite. 

5. AUTOGENERATION OF TEST CASES 
Thirty-five additional test cases were introduced to the base regression 
test suite. The functional test cases exceeded 100 lines of XML code. 
Thus, the addition of 35 test cases translated into the addition of more 
than 3000 lines of XML code. Because the effort involved was 
substantial, the test cases were autogenerated.  

5.1 Autogeneration of Functional Test Cases 
The process involved using the human-readable text files to autogenerate 
functional test cases. The functional test cases included mote-
arrangement-specific information as well as scenario-specific JavaScript. 
The mote and mote arrangement information was autogenerated using the 
developed tool. The scenario-specific JavaScripts were introduced 
manually. 

 
        Figure 2. Tool for the autogeneration of functional test cases 
Figure 3 illustrates the process used for autogenerating the test cases. The 
output of each stage acted as the input of the subsequent stage. We 
developed a tool comprising 897 lines of code. The code was written in 
Java, and the Cooja code was reused at several locations for the generic 
engine. The generic engine was coded first and required drivers. The 
RegEx package was used to parse the input text file. The parsed 
information was used to populate the internal data structures of the tool. 
The driver then used this data to drive the generic engine. In summary, 
the input text file contained all the configuration information of the mote 
types embedded in it. The output files were csc XML files that included 
the configuration information required for the test cases. The scenario-
specific JavaScript was then manually embedded in the test case for 
completion. The XML line count for the activity was more than 3500. 
Figure 4 displays a sample input text file accepted by the tool. The parser 
was written such that any number of csc files could be generated in one 
run. The logical blocks for the individual test cases are called records, 
and each line within the record is a field. The engine is generic because 
it works for any number of mote types and motes. The code written for 
this study can be found in GitHub [19] 
Figure 5 displays the sample output XML file generated using the 
developed tool. The generated XML file was complete in all aspects 
except the scenario-specific JavaScript. Because the generation of 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019                                                                                                          1242 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org 

scenario-specific information could not be automated, the scenario-
specific JavaScript was inserted manually. 
In this study, test cases were generated through a two-pass mechanism. 
The skeletons of the XMLs were generated in the first pass, and the 
JavaScript was inserted in the second pass. Thus, complete test cases 
were generated, which were ready for execution in Cooja. The 
advantages of automation include the elimination of manual work and 
human errors when coding individual lines of XML. 

6. AN ATTEMPT TO GENERATE THE COOJA 
TEST SUITE USING THE ACTS TOOL 
Appendix B gives the test design that was used to generate the test cases 
using the ACTS tool. The tool generated impractical number of test cases. 
The solution was to run the test cases manually with the aid of ACTS. 
 

 
          Figure 3. Autogeneration process for the functional test cases 

 
                        Figure 4. Sample text input file 

 
               Figure 5. Sample XML output file 
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7. PROCESS OF COLLECTING CODE 
COVERAGE DATA 
Figure 1 depicts the process flow for collecting coverage data prior to and 
post CT. Figure 1 indicates the comparison that must be performed. The 
coverage data of the base regression suite is the reference point. Figure 6 
illustrates how the Clover tool interacts with Cooja to generate the output 
files for inference. Figure 7 illustrates the changes that must be made to 
the test environment for obtaining the required code coverage data. The 
build.xml file must be appropriately modified for incorporating the 
Clover tool in the Cooja environment. 

 
       Figure 6. Interaction between Cooja and the OpenClover tool 

 
Figure 7. Changes in the test environment for collecting Clover data 

8. RESULTS 
Table II provides a comparison of the code coverage in the simulator for 
various Java packages. The total percentage of coverage (TPC) at the 
simulator level depends on the internal calculation of the coverage tool 
employed for collecting the coverage data. Section 9 describes how the 
TPC is calculated in the Clover tool. 
Table II. Comparison of code coverage in simulator for three test suites 

Java package 
Test 
Suite A 

Test 
Suite B 

Test 
Suite C 

Cooja.plugins.analyzers  0% 0% 77.8% 

Cooja.plugins.skin 0% 0% 72.5% 

Cooja.positioners 0% 0% 87.4% 

contikimote.interfaces 3% 3% 52% 

cooja.util 6.50% 6.50% 53.7% 

cooja.motes 6.60% 6.60% 58.6% 

cooja.plugins 6.60% 6.90% 72.5% 

cooja.dialogs 7.30% 7.70% 69.8% 

cooja.contikimotes 17.90% 19.70% 64.2% 

cooja.interfaces 20.80% 20.80% 69.3% 

se.sics.cooja 33% 34.60% 77% 

cooja.radiomediums 43.60% 44% 60.7% 

cooja.emulatedmotes 1.70% 53.80% 54.7% 

TPC 13.6% 14.7% 70.5% 

 
Figure 8 illustrates the comparison of the code coverage in the simulator 
in the form of bar charts. The figure compares the coverage at the package 
level of the simulator for the three test suites. 
The coverage at the package level alone does not provide sufficient 
information. Figure 10 indicates the class coverage distribution of the 
three test suites (A, B, and C). In an ideal test output, all the classes are 
represented in the extreme right bar of the chart. The bars on the right 
side of the chart for Test Suite C are taller than those on the left side, 
which indicates that the testing in the simulator was superior for Test 
Suite C than for Test Suites A and B. 
 Figure 11 displays a tree map of the coverage in the simulator for the 
three test suites. The following convention is used in tree maps: 
• Deep red: No coverage 
• Pale green: Full coverage 
• Yellow: Lies between red and green 
• Square size: Indicates the complexity of the code IJSER
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Figure 8. Comparison of the code coverage in the simulator for the three 
test suites 

 
Figure 9. Reading the tree map 

 
 
Figure 10. Class coverage distribution for Test Suites A (top), B (middle), 
and C (bottom) 
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Figure 11. Tree maps of the code coverage in the simulator for Test Suites 
A (top), B (middle), and C (bottom) 

9. ANALYSIS 

 
Figure 12. Source code distribution in the simulator with LOC metrics 

 
Figure 13. Code metrics for the Cooja code base 
Test Suites A and B exhibited a TPC of approximately 13.6% and 14.7%, 
respectively. We analyzed the code of Cooja to determine the causes for 
low coverage percentage. The major packages of the code are plugins, 
the Cooja package, and dialogs. Cooja supports two modes of execution, 
namely the graphical user interface (GUI) mode and non-GUI mode. The 
regression test suite environment was written such that Cooja ran in the 
non-GUI mode. The plugins, Cooja package, and dialogs included a 
significant code meant for the GUI mode. In this case, achieving a high 
TPC with Test Suites A and B was impossible. 
CT was applied to Test Suite B for testing various configuration 
combinations. The Cooja code was written such that the firmware file 
was built externally (The *.C files in the examples directory were 
compiled.) and loaded into the mote types. This logic is primarily present 
in the files se.sics.cooja.Contikimote.ContikiMoteType and 
se.sics.cooja.Simulation. Therefore, despite using the CT test cases for 
testing various hardware configurations, no increase was observed in the 
code coverage of the simulator. 

9.1 Coverage Analysis of Test Suites 
We used three test suites: 
1) A base test suite with 64 test cases (Test Suite A). 
2) A re-engineered test suite with 64 base and 35 ACTS test cases (Test 
Suite B). 
3) The Cooja test suite designed from scratch (Test Suite C). 

The TPC for Test Suite B was 1.1% higher than that for Test Suite 
A. The TPC is calculated as follows in the Clover tool: 

 
TPC = (BT + BF + SC + MC)/(2 × B + S + M) × 100% 
 
where 
 
BT: Branches that evaluated to “true” at least once 
BF: Branches that evaluated to “false” at least once 
SC: Statements covered 
MC: Methods entered 
 
B: Total number of branches 
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S: Total number of statements 
M: Total number of methods 
 

B, S, and M were obtained from the Clover output. Thus, the total 
increase in (BT + BF + SC + MC) was 312 for the 35 added test cases. 
 
Each package responded differently to the 35 added test cases. For 
example, the emulated motes package registered a 52.1% increase in (BT 
+ BF + SC + MC) for the additional 35 test cases of Test Suite B. 

 
The low TPC is attributed to the manner in which Cooja runs in the 
regression mode. During regression, Cooja runs in the non-GUI mode. 
However, a significant portion of the code in Cooja is meant for the GUI 
mode. 

 
In the code of Cooja, the firmware is built externally and loaded into the 
mote types for various emulated configurations of CT. The remainder of 
the code is common for the various mote types. The TPC increase is low 
with this type of code. However, in this case, the TPC increase is not a 
direct measure of the effectiveness of CT for Test Suite B. 

 
For Test Suite C, the simulator (i.e., Cooja) is the system under test. In 
this mode, the intention is to thoroughly test the simulator. Test Suite C 
runs the simulator in both the GUI and non-GUI modes. For Test Suite 
C, we primarily concentrated on the success path test cases. Moreover, 
some critical failure path test cases were executed. A quick examination 
of the Cooja code revealed 237 catch blocks of Java code. These 
corresponded to 237 failure scenarios. We did not hit all the failure paths. 
We concluded the refining of input parameter modeling at 70% coverage. 

10. SUPPLEMENTARY INFORMATION 
The Clover output of the test executions are maintained in a repository 
that can be accessed online [20]. 
 

11. CONCLUSION 
We present a test suite design approach in this research by using CT. The 
base regression test suite was redesigned using the CT approach. The test 
environment of Contiki has difficult-to-use constraints for the ACTS 
generated test cases. We had to explicitly select the test cases that were 
runnable in Contiki and Cooja environments from the ACTS generated 
set. Functional test cases were autogenerated and added to the base 
regression test suite. The increase in the coverage of the simulator was 
marginal for the re-engineered test suite because of the execution mode 
of the simulator and simulator code structure. We designed the test cases 
from scratch for the Cooja system under test. This designed suite 
exhibited a substantial increase in the simulator coverage. In this study, 
we investigated the use of CT on Contiki and Cooja.  
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APPENDIX A: ACTS TEST DESIGN FOR THE RE-ENGINEERED TEST SUITE 
 
Parameters:              

Platform 
[Exp5438, z1, wismote, micaz, sky, jcreate, sentilla-usb, esb, native, 
cooja]        

base [Multithreading, coffee, checkpointng, none]          

Rime 
[collect, rucb, deluge, runicast, trickle, mesh, 
none]          

NetPerformance [NetPerf, NetPerf-lpp, NetPerf-cxmac, none]          

collect 
[shell-collect, shell-collect-lossy, 
none]           

ipv4 
[telnet-ping, webserver, 
none]            

ipv6 
[ipv6-udp, udp-fragmentation, unicast-fragmentation, ipv6-rpl-collect, 
none]        

RPL 
[up-root, root-reboot, large-network, upanddownroots, temporaryrootloss, 
randomrearrangement, rpl-dao, none]     

ipv6apps 
[servreg-hack, coap, 
none]            

               
Relations:               
Constraints :              
(base != "none") => (Rime == "none")            
(base != "none") => (NetPerformance == "none")           
(base != "none") => (collect == "none")            
(base != "none") => (ipv4=="none")            
(base != "none") => (ipv6=="none")            
(base != "none") => (RPL =="none")            
(base != "none") => (ipv6apps == "none")            
(Rime != "none") => (base=="none")            
(Rime != "none") => ( NetPerformance == "none")           
(Rime != "none") => (collect == "none")            
(Rime != "none") => (ipv4 == "none")            
(Rime != "none") => (ipv6 == "none")            
(Rime != "none") => (RPL ==  "none")            
(Rime != "none") => (ipv6apps == "none")            
( NetPerformance != "none") => (base == "none")           
( NetPerformance != "none") => (Rime == "none")           
(NetPerformance != "none") => (collect == "none")           
(NetPerformance != "none") => (ipv4  ==  "none")           
( NetPerformance != "none") => (ipv6 == "none")           
(NetPerformance != "none") => (RPL == "none")           
( NetPerformance != "none") => (ipv6apps == "none")           
( collect != "none") => (base == "none")            
(collect != "none") => (Rime == "none")            
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(collect != "none") => (NetPerformance == "none")           
( collect != "none") => (ipv4 == "none")            
(collect != "none") => (ipv6 == "none")            
(collect != "none") => (RPL == "none")            
(collect != "none") => (ipv6apps == "none")            
(ipv4 != "none") => (base == "none")            
(ipv4 != "none") => (Rime == "none")            

(ipv4 != "none") => (NetPerformance == "none")           
(ipv4 != "none") => (collect == "none")            
(ipv4 != "none") => (ipv6 == "none")            
(ipv4 != "none") => (RPL == "none")            
(ipv4 != "none") => (ipv6apps == "none")            
(ipv6 != "none") => (base == "none")            
(ipv6 != "none") => (Rime == "none")            
(ipv6 != "none") => (NetPerformance == "none")           
(ipv6 != "none") => (collect == "none")            
(ipv6 != "none") => (ipv4 == "none")            
(ipv6 != "none") => (RPL == "none")            
(ipv6 != "none") => (ipv6apps == "none")            
(RPL != "none") => (base == "none")            
(RPL != "none") => (Rime == "none")            
(RPL != "none") => (NetPerformance == "none")           
(RPL != "none") => (collect == "none")            
(RPL != "none") => (ipv4 == "none")            
(RPL != "none") => (ipv6 == "none")            
(RPL != "none") => (ipv6apps == "none")            
(ipv6apps != "none") => (base == "none")            
(ipv6apps != "none") => (Rime == "none")            
(ipv6apps != "none") => (NetPerformance == "none")           
(ipv6apps != "none") => (collect == "none")            
(ipv6apps != "none") => (ipv4 == "none")            
(ipv6apps != "none") => (ipv6 == "none")            
(ipv6apps != "none") => (RPL == "none")            
(base != "none") || (Rime != "none") || (NetPerformance != "none") || (collect != "none") || (ipv4 != "none") || 
(ipv6 != "none") || (RPL != "none") || (ipv6apps != "none") 
 
 
                                                                                                                                                                                                                                                         
APPENDIX B: ACTS TEST DESIGN ATTEMPT FOR THE COOJA TEST SUITE 
 
 
Input Parameter Model 1: 
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Parameters:         
FileOperation [NewSimulation, OpenSimulation, CloseSimulation, SaveSimulation, ExportSimulation, Exit] 
Simulation [StartSimulation, ReloadSimulation, ControlPanel, Simulation, Null]   
Motes [AddMotes, MoteTypes, RemoveAllMotes, Null]     
          
Relations:          
[2,(Simulation, Motes)]        
Constraints :         
(FileOperation = "CloseSimulation") => (Simulation == "Null")     
(FileOperation = "CloseSimulation") => (Motes == "Null")     
(FileOperation = "Exit") => (Simulation == "Null")      
(FileOperation = "Exit") => (Motes == "Null") 
 
 
      

 
Input Parameter Model 2: 
 
Parameters:                            
FileOperation [NewSimulation, OpenSimulation, CloseSimulation, SaveSimulation, ExportSimulation, Exit]                   
Simulation [StartSimulation, ReloadSimulation, Null]                        

Tools 

[Network, MoteOutPut, TimeLine, BreakPoints, RadioMessages, SimulationScriptEditor,  
Notes, BufferView, MoteRadioDutyCycle, MoteInformstion, MoteInterfaceViewer, VariableWatcher, 
MSPCli, MSPCodeWatcher, MSPStackWatcher, MSPCycleWatcher, SerialSocket, CollectView, Null] 

                            
Relations:                            
[2,(Simulation, Tools)]                           
Constraints :                            
(FileOperation = "CloseSimulation") => (Simulation=="Null")                        
(FileOperation = "CloseSimulation") => (Tools == "Null")                        
(FileOperation = "Exit") => (Simulation == "Null")                         
(FileOperation = "Exit") => (Tools == "Null")                         
(FileOperation = "SaveSimulation") => (Simulation=="Null")                        
(FileOperation = "SaveSimulation") => (Tools == "Null")                        
(FileOperation = "ExportSimulation")=>(Simulation=="Null")                        
(FileOperation = "ExportSimulation") => (Tools == "Null")                        

 
 
 
 
Input Parameter Model 3: 
 
Parameters:                           
FileOperation [NewSimulation]                         
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RadioMedium 
[UDGM_DistanceLoss, UDGMConstantloss, DirectedGraphRadioMedium, 
 NoRadioTraffic, MutiPathRayTraceMedium]                

CreateNewMoteType 
[DisturberMote, ImportJavaMote, CoojaMote, MicazMote, SkyMote, Exp430F5438Mote,  
Wismote, Z1Mote]                 

Tools 

[Network, MoteOutput, TimeLine, BreakPoints, RadioMessages, SimulationScriptEditor, 
 BufferView, MoteRadioDutyCycle, MoteInformation, MoteInterfaceViewer, VariableWatcher, 
 MSPCli, MSPCodeWatcher, MSPStackWatcher, SerialClientSocket, SerialServerSocket,  
CollectView] 

                           
Relations:                           
[3,(RadioMedium, CreateNewMoteType, Tools)]                        

 
 
Input Parameter Model 4: 
 
Parameters:                             
FileOperation [OpenSimulation]                           

IOTScenario 

[RplUdp, RplUdpPowerTrace, SkyWebSense, UnicastExample, BroadCastExample,  
RplCollectTreeDenseNoloss, RplCollectTreeSparseLossy, UdpStream, TrickleLibrary, 
RimeCollect, RimeBroadCast, HelloWorld, Netdb, NetPerfSky, ServerClient, ServerOnly,  
CoapServerClientExample, RestServerExample] 

Tools 

[Network, MoteOutPut, TimeLine, BreakPoints, RadioMessages, SimulationScriptEditor, 
BufferView, MoteRadioDutyCycle, MoteInformation, MoteInterfaceViewer, VariableWatcher,  
MSPCli, MSPCodeWatcher, MSPStackWatcher, SerialClientSocket, 
SerialServerSocket, Collectview]   

                             
Relations:                             
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